MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. ASTM Grade HG10 MNN Steel

4032 aluminum belongs to the aluminum alloys classification, while ASTM grade HG10 MNN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
170
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 6.7
23
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 390
590
Tensile Strength: Yield (Proof), MPa 320
250

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 570
1420
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
21
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
4.0
Embodied Energy, MJ/kg 140
58
Embodied Water, L/kg 1030
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
110
Resilience: Unit (Modulus of Resilience), kJ/m3 700
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 41
21
Strength to Weight: Bending, points 45
20
Thermal Diffusivity, mm2/s 59
3.9
Thermal Shock Resistance, points 20
13

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0 to 0.1
18.5 to 20.5
Copper (Cu), % 0.5 to 1.3
0 to 0.5
Iron (Fe), % 0 to 1.0
57.9 to 66.5
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0.5 to 1.3
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13.5
0 to 0.7
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0