MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. AWS E3155

4032 aluminum belongs to the aluminum alloys classification, while AWS E3155 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is AWS E3155.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 6.7
23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
81
Tensile Strength: Ultimate (UTS), MPa 390
770

Thermal Properties

Latent Heat of Fusion, J/g 570
310
Melting Completion (Liquidus), °C 570
1460
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 19
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 7.8
7.7
Embodied Energy, MJ/kg 140
110
Embodied Water, L/kg 1030
300

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 41
26
Strength to Weight: Bending, points 45
22
Thermal Diffusivity, mm2/s 59
3.3
Thermal Shock Resistance, points 20
20

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0.5 to 1.3
0 to 0.75
Iron (Fe), % 0 to 1.0
23.3 to 36.3
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
1.0 to 2.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0.5 to 1.3
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0