MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. AWS E80C-Ni1

4032 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is AWS E80C-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.7
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 390
620
Tensile Strength: Yield (Proof), MPa 320
540

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Melting Completion (Liquidus), °C 570
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.6
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1030
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
160
Resilience: Unit (Modulus of Resilience), kJ/m3 700
770
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 41
22
Strength to Weight: Bending, points 45
21
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 20
18

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.5 to 1.3
0 to 0.35
Iron (Fe), % 0 to 1.0
95.1 to 99.2
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0.5 to 1.3
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13.5
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5