MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. EN 1.7362 Steel

4032 aluminum belongs to the aluminum alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.7
21 to 22
Fatigue Strength, MPa 110
140 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Shear Strength, MPa 260
320 to 370
Tensile Strength: Ultimate (UTS), MPa 390
510 to 600
Tensile Strength: Yield (Proof), MPa 320
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Maximum Temperature: Mechanical, °C 180
510
Melting Completion (Liquidus), °C 570
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.8
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1030
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 700
100 to 340
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 41
18 to 21
Strength to Weight: Bending, points 45
18 to 20
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 20
14 to 17

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.1
4.0 to 6.0
Copper (Cu), % 0.5 to 1.3
0 to 0.3
Iron (Fe), % 0 to 1.0
91.5 to 95.2
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0.5 to 1.3
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 11 to 13.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0