MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. EN 1.8869 Steel

4032 aluminum belongs to the aluminum alloys classification, while EN 1.8869 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is EN 1.8869 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
160
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.7
25
Fatigue Strength, MPa 110
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 260
350
Tensile Strength: Ultimate (UTS), MPa 390
540
Tensile Strength: Yield (Proof), MPa 320
360

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 570
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
48
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.4
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1030
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
120
Resilience: Unit (Modulus of Resilience), kJ/m3 700
340
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 41
19
Strength to Weight: Bending, points 45
19
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0.5 to 1.3
0 to 0.3
Iron (Fe), % 0 to 1.0
96.4 to 100
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.25
Nickel (Ni), % 0.5 to 1.3
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 11 to 13.5
0 to 0.4
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.060
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0 to 0.15
0