MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. SAE-AISI 1026 Steel

4032 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1026 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is SAE-AISI 1026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.7
17 to 27
Fatigue Strength, MPa 110
200 to 310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 260
320 to 340
Tensile Strength: Ultimate (UTS), MPa 390
500 to 550
Tensile Strength: Yield (Proof), MPa 320
270 to 470

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 570
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
52
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1030
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 700
200 to 580
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 41
18 to 20
Strength to Weight: Bending, points 45
18 to 19
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 20
16 to 18

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0.22 to 0.28
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.5 to 1.3
0
Iron (Fe), % 0 to 1.0
98.7 to 99.18
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0.5 to 1.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13.5
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0