MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. N06025 Nickel

4032 aluminum belongs to the aluminum alloys classification, while N06025 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 6.7
32
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 260
500
Tensile Strength: Ultimate (UTS), MPa 390
760
Tensile Strength: Yield (Proof), MPa 320
310

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 570
1350
Melting Onset (Solidus), °C 530
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
50
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 7.8
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1030
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
190
Resilience: Unit (Modulus of Resilience), kJ/m3 700
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 41
26
Strength to Weight: Bending, points 45
22
Thermal Diffusivity, mm2/s 59
2.9
Thermal Shock Resistance, points 20
21

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0 to 0.1
24 to 26
Copper (Cu), % 0.5 to 1.3
0 to 0.1
Iron (Fe), % 0 to 1.0
8.0 to 11
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0.5 to 1.3
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 11 to 13.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.25
0.010 to 0.1
Residuals, % 0 to 0.15
0