MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. N10001 Nickel

4032 aluminum belongs to the aluminum alloys classification, while N10001 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is N10001 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
220
Elongation at Break, % 6.7
45
Fatigue Strength, MPa 110
300
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 28
84
Shear Strength, MPa 260
550
Tensile Strength: Ultimate (UTS), MPa 390
780
Tensile Strength: Yield (Proof), MPa 320
350

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 570
1620
Melting Onset (Solidus), °C 530
1570
Specific Heat Capacity, J/kg-K 900
390
Thermal Expansion, µm/m-K 19
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.6
9.2
Embodied Carbon, kg CO2/kg material 7.8
15
Embodied Energy, MJ/kg 140
200
Embodied Water, L/kg 1030
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
290
Resilience: Unit (Modulus of Resilience), kJ/m3 700
280
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
22
Strength to Weight: Axial, points 41
24
Strength to Weight: Bending, points 45
21
Thermal Shock Resistance, points 20
25

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
0 to 1.0
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0.5 to 1.3
0
Iron (Fe), % 0 to 1.0
4.0 to 6.0
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0.5 to 1.3
58 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0