MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. S41003 Stainless Steel

4032 aluminum belongs to the aluminum alloys classification, while S41003 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.7
21
Fatigue Strength, MPa 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 260
320
Tensile Strength: Ultimate (UTS), MPa 390
520
Tensile Strength: Yield (Proof), MPa 320
310

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 180
720
Melting Completion (Liquidus), °C 570
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
27
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.9
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 1030
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
92
Resilience: Unit (Modulus of Resilience), kJ/m3 700
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 41
19
Strength to Weight: Bending, points 45
18
Thermal Diffusivity, mm2/s 59
7.2
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
10.5 to 12.5
Copper (Cu), % 0.5 to 1.3
0
Iron (Fe), % 0 to 1.0
83.4 to 89.5
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0.5 to 1.3
0 to 1.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0