MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. S42010 Stainless Steel

4032 aluminum belongs to the aluminum alloys classification, while S42010 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is S42010 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 6.7
18
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 260
370
Tensile Strength: Ultimate (UTS), MPa 390
590
Tensile Strength: Yield (Proof), MPa 320
350

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 180
800
Melting Completion (Liquidus), °C 570
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
29
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
8.5
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.2
Embodied Energy, MJ/kg 140
30
Embodied Water, L/kg 1030
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
95
Resilience: Unit (Modulus of Resilience), kJ/m3 700
310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 41
21
Strength to Weight: Bending, points 45
20
Thermal Diffusivity, mm2/s 59
7.9
Thermal Shock Resistance, points 20
21

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0.15 to 0.3
Chromium (Cr), % 0 to 0.1
13.5 to 15
Copper (Cu), % 0.5 to 1.3
0
Iron (Fe), % 0 to 1.0
80.9 to 85.6
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.85
Nickel (Ni), % 0.5 to 1.3
0.35 to 0.85
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0