MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. 206.0 Aluminum

Both 4045 aluminum and 206.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 2.3
8.4 to 12
Fatigue Strength, MPa 45
88 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 69
260
Tensile Strength: Ultimate (UTS), MPa 120
330 to 440
Tensile Strength: Yield (Proof), MPa 64
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 540
390
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 580
570
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 170
120
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
33
Electrical Conductivity: Equal Weight (Specific), % IACS 160
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 29
270 to 840
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
46
Strength to Weight: Axial, points 13
30 to 40
Strength to Weight: Bending, points 21
35 to 42
Thermal Diffusivity, mm2/s 74
46
Thermal Shock Resistance, points 5.7
17 to 23

Alloy Composition

Aluminum (Al), % 87.4 to 91
93.3 to 95.3
Copper (Cu), % 0 to 0.3
4.2 to 5.0
Iron (Fe), % 0 to 0.8
0 to 0.15
Magnesium (Mg), % 0 to 0.050
0.15 to 0.35
Manganese (Mn), % 0 to 0.050
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 9.0 to 11
0 to 0.1
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.15 to 0.3
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15