MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. 5252 Aluminum

Both 4045 aluminum and 5252 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 2.3
4.5 to 11
Fatigue Strength, MPa 45
100 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Shear Strength, MPa 69
140 to 160
Tensile Strength: Ultimate (UTS), MPa 120
230 to 290
Tensile Strength: Yield (Proof), MPa 64
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 580
610
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 170
140
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
34
Electrical Conductivity: Equal Weight (Specific), % IACS 160
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.7
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 29
210 to 430
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 13
23 to 30
Strength to Weight: Bending, points 21
31 to 36
Thermal Diffusivity, mm2/s 74
57
Thermal Shock Resistance, points 5.7
10 to 13

Alloy Composition

Aluminum (Al), % 87.4 to 91
96.6 to 97.8
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.1
Magnesium (Mg), % 0 to 0.050
2.2 to 2.8
Manganese (Mn), % 0 to 0.050
0 to 0.1
Silicon (Si), % 9.0 to 11
0 to 0.080
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0 to 0.050
Residuals, % 0
0 to 0.1