MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. AISI 201LN Stainless Steel

4045 aluminum belongs to the aluminum alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.3
25 to 51
Fatigue Strength, MPa 45
340 to 540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 69
530 to 680
Tensile Strength: Ultimate (UTS), MPa 120
740 to 1060
Tensile Strength: Yield (Proof), MPa 64
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 540
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 160
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1070
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 29
310 to 1520
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 13
27 to 38
Strength to Weight: Bending, points 21
24 to 30
Thermal Diffusivity, mm2/s 74
4.0
Thermal Shock Resistance, points 5.7
16 to 23

Alloy Composition

Aluminum (Al), % 87.4 to 91
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 0 to 0.3
0 to 1.0
Iron (Fe), % 0 to 0.8
67.9 to 73.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
6.4 to 7.5
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 9.0 to 11
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0