MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. AWS E110C-K4

4045 aluminum belongs to the aluminum alloys classification, while AWS E110C-K4 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is AWS E110C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.3
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 120
850
Tensile Strength: Yield (Proof), MPa 64
780

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 160
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1070
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
140
Resilience: Unit (Modulus of Resilience), kJ/m3 29
1600
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 13
30
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 74
11
Thermal Shock Resistance, points 5.7
25

Alloy Composition

Aluminum (Al), % 87.4 to 91
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0.15 to 0.65
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 0 to 0.8
92.1 to 98.4
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 11
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5