MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. AWS E80C-B8

4045 aluminum belongs to the aluminum alloys classification, while AWS E80C-B8 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is AWS E80C-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.3
19
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 120
620
Tensile Strength: Yield (Proof), MPa 64
540

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
25
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 160
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.1
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1070
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
110
Resilience: Unit (Modulus of Resilience), kJ/m3 29
740
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 13
22
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 74
6.9
Thermal Shock Resistance, points 5.7
17

Alloy Composition

Aluminum (Al), % 87.4 to 91
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 0 to 0.8
85.5 to 90.6
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.4 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 11
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5