MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. EN 1.0033 Steel

4045 aluminum belongs to the aluminum alloys classification, while EN 1.0033 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is EN 1.0033 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.3
17 to 32
Fatigue Strength, MPa 45
120 to 140
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 69
200
Tensile Strength: Ultimate (UTS), MPa 120
300 to 330
Tensile Strength: Yield (Proof), MPa 64
150 to 200

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
53
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1070
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
48 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 29
63 to 100
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 13
10 to 12
Strength to Weight: Bending, points 21
13 to 14
Thermal Diffusivity, mm2/s 74
14
Thermal Shock Resistance, points 5.7
9.4 to 10

Alloy Composition

Aluminum (Al), % 87.4 to 91
0
Carbon (C), % 0
0 to 0.11
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.8
98.8 to 100
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.7
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 9.0 to 11
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0