MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. EN 1.5663 Steel

4045 aluminum belongs to the aluminum alloys classification, while EN 1.5663 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is EN 1.5663 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.3
20
Fatigue Strength, MPa 45
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 69
470
Tensile Strength: Ultimate (UTS), MPa 120
750
Tensile Strength: Yield (Proof), MPa 64
660

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 160
430
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 160
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.8
2.3
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1070
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
150
Resilience: Unit (Modulus of Resilience), kJ/m3 29
1150
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 13
26
Strength to Weight: Bending, points 21
23
Thermal Shock Resistance, points 5.7
22

Alloy Composition

Aluminum (Al), % 87.4 to 91
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.8
88.6 to 91.2
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
8.5 to 10
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 9.0 to 11
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0