MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. EN 1.7367 Steel

4045 aluminum belongs to the aluminum alloys classification, while EN 1.7367 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is EN 1.7367 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.3
18
Fatigue Strength, MPa 45
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 120
670
Tensile Strength: Yield (Proof), MPa 64
460

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Maximum Temperature: Mechanical, °C 160
600
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 160
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1070
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
110
Resilience: Unit (Modulus of Resilience), kJ/m3 29
560
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 13
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 74
6.9
Thermal Shock Resistance, points 5.7
19

Alloy Composition

Aluminum (Al), % 87.4 to 91
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.8
87.3 to 90.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 11
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0