MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. CC496K Bronze

4045 aluminum belongs to the aluminum alloys classification, while CC496K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
97
Elongation at Break, % 2.3
8.6
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 27
36
Tensile Strength: Ultimate (UTS), MPa 120
210
Tensile Strength: Yield (Proof), MPa 64
99

Thermal Properties

Latent Heat of Fusion, J/g 540
170
Maximum Temperature: Mechanical, °C 160
140
Melting Completion (Liquidus), °C 600
900
Melting Onset (Solidus), °C 580
820
Specific Heat Capacity, J/kg-K 900
340
Thermal Conductivity, W/m-K 170
52
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
11
Electrical Conductivity: Equal Weight (Specific), % IACS 160
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
9.2
Embodied Carbon, kg CO2/kg material 7.8
3.3
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1070
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
15
Resilience: Unit (Modulus of Resilience), kJ/m3 29
50
Stiffness to Weight: Axial, points 15
5.9
Stiffness to Weight: Bending, points 54
17
Strength to Weight: Axial, points 13
6.5
Strength to Weight: Bending, points 21
8.6
Thermal Diffusivity, mm2/s 74
17
Thermal Shock Resistance, points 5.7
8.1

Alloy Composition

Aluminum (Al), % 87.4 to 91
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 0 to 0.3
72 to 79.5
Iron (Fe), % 0 to 0.8
0 to 0.25
Lead (Pb), % 0
13 to 17
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 0.2
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 9.0 to 11
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 2.0
Residuals, % 0 to 0.15
0