MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. C11100 Copper

4045 aluminum belongs to the aluminum alloys classification, while C11100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 2.3
1.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Shear Strength, MPa 69
230
Tensile Strength: Ultimate (UTS), MPa 120
460
Tensile Strength: Yield (Proof), MPa 64
420

Thermal Properties

Latent Heat of Fusion, J/g 540
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 600
1080
Melting Onset (Solidus), °C 580
1070
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 170
390
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
100
Electrical Conductivity: Equal Weight (Specific), % IACS 160
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 29
750
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 13
14
Strength to Weight: Bending, points 21
15
Thermal Diffusivity, mm2/s 74
110
Thermal Shock Resistance, points 5.7
16

Alloy Composition

Aluminum (Al), % 87.4 to 91
0
Copper (Cu), % 0 to 0.3
99.9 to 100
Iron (Fe), % 0 to 0.8
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Silicon (Si), % 9.0 to 11
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.1