MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. C61500 Bronze

4045 aluminum belongs to the aluminum alloys classification, while C61500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 2.3
3.0 to 55
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
42
Shear Strength, MPa 69
350 to 550
Tensile Strength: Ultimate (UTS), MPa 120
480 to 970
Tensile Strength: Yield (Proof), MPa 64
150 to 720

Thermal Properties

Latent Heat of Fusion, J/g 540
220
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 600
1040
Melting Onset (Solidus), °C 580
1030
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 170
58
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
13
Electrical Conductivity: Equal Weight (Specific), % IACS 160
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 7.8
3.2
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1070
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
27 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 29
100 to 2310
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 13
16 to 32
Strength to Weight: Bending, points 21
16 to 26
Thermal Diffusivity, mm2/s 74
16
Thermal Shock Resistance, points 5.7
17 to 34

Alloy Composition

Aluminum (Al), % 87.4 to 91
7.7 to 8.3
Copper (Cu), % 0 to 0.3
89 to 90.5
Iron (Fe), % 0 to 0.8
0
Lead (Pb), % 0
0 to 0.015
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
1.8 to 2.2
Silicon (Si), % 9.0 to 11
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5