MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. N06002 Nickel

4045 aluminum belongs to the aluminum alloys classification, while N06002 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 2.3
41
Fatigue Strength, MPa 45
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 69
520
Tensile Strength: Ultimate (UTS), MPa 120
760
Tensile Strength: Yield (Proof), MPa 64
310

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 600
1360
Melting Onset (Solidus), °C 580
1260
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 170
9.9
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 160
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 7.8
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1070
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
250
Resilience: Unit (Modulus of Resilience), kJ/m3 29
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 13
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 74
2.6
Thermal Shock Resistance, points 5.7
19

Alloy Composition

Aluminum (Al), % 87.4 to 91
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.8
17 to 20
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
42.3 to 54
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0