MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. 8011A Aluminum

Both 4047 aluminum and 8011A aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 3.4
1.7 to 28
Fatigue Strength, MPa 45
33 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 120
100 to 180
Tensile Strength: Yield (Proof), MPa 64
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 580
650
Melting Onset (Solidus), °C 580
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
56
Electrical Conductivity: Equal Weight (Specific), % IACS 120
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.5
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 28
8.2 to 200
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
50
Strength to Weight: Axial, points 13
11 to 18
Strength to Weight: Bending, points 21
18 to 26
Thermal Diffusivity, mm2/s 59
86
Thermal Shock Resistance, points 5.6
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 85.3 to 89
97.5 to 99.1
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 0 to 0.8
0.5 to 1.0
Magnesium (Mg), % 0 to 0.1
0 to 0.1
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 11 to 13
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.15