MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. AISI 422 Stainless Steel

4047 aluminum belongs to the aluminum alloys classification, while AISI 422 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is AISI 422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 3.4
15 to 17
Fatigue Strength, MPa 45
410 to 500
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 69
560 to 660
Tensile Strength: Ultimate (UTS), MPa 120
910 to 1080
Tensile Strength: Yield (Proof), MPa 64
670 to 870

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 160
650
Melting Completion (Liquidus), °C 580
1480
Melting Onset (Solidus), °C 580
1470
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.5
7.9
Embodied Carbon, kg CO2/kg material 7.7
3.1
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1050
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 28
1140 to 1910
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 13
32 to 38
Strength to Weight: Bending, points 21
26 to 30
Thermal Diffusivity, mm2/s 59
6.4
Thermal Shock Resistance, points 5.6
33 to 39

Alloy Composition

Aluminum (Al), % 85.3 to 89
0
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.8
81.9 to 85.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.15
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0