MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. EN 1.4905 Stainless Steel

4047 aluminum belongs to the aluminum alloys classification, while EN 1.4905 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.4
19
Fatigue Strength, MPa 45
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 69
460
Tensile Strength: Ultimate (UTS), MPa 120
740
Tensile Strength: Yield (Proof), MPa 64
510

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 160
660
Melting Completion (Liquidus), °C 580
1480
Melting Onset (Solidus), °C 580
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
7.9
Embodied Carbon, kg CO2/kg material 7.7
2.8
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 1050
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
130
Resilience: Unit (Modulus of Resilience), kJ/m3 28
680
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 13
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 59
7.0
Thermal Shock Resistance, points 5.6
25

Alloy Composition

Aluminum (Al), % 85.3 to 89
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.8
86.2 to 88.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 11 to 13
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0