MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. EN 1.6587 Steel

4047 aluminum belongs to the aluminum alloys classification, while EN 1.6587 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is EN 1.6587 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 120
520 to 1420

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 160
440
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.5
7.9
Embodied Carbon, kg CO2/kg material 7.7
1.7
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 1050
58

Common Calculations

Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 13
18 to 50
Strength to Weight: Bending, points 21
18 to 36
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 5.6
15 to 42

Alloy Composition

Aluminum (Al), % 85.3 to 89
0 to 0.050
Carbon (C), % 0
0.15 to 0.21
Chromium (Cr), % 0
1.5 to 1.8
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 0 to 0.8
94.4 to 96.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.15
0.5 to 0.9
Molybdenum (Mo), % 0
0.25 to 0.35
Nickel (Ni), % 0
1.4 to 1.7
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0