MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. C68700 Brass

4047 aluminum belongs to the aluminum alloys classification, while C68700 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is C68700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 120
390
Tensile Strength: Yield (Proof), MPa 64
140

Thermal Properties

Latent Heat of Fusion, J/g 570
190
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 580
970
Melting Onset (Solidus), °C 580
930
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 130
100
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
23
Electrical Conductivity: Equal Weight (Specific), % IACS 120
25

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.5
8.3
Embodied Carbon, kg CO2/kg material 7.7
2.8
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 1050
340

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 28
90
Stiffness to Weight: Axial, points 16
7.3
Stiffness to Weight: Bending, points 55
19
Strength to Weight: Axial, points 13
13
Strength to Weight: Bending, points 21
14
Thermal Diffusivity, mm2/s 59
30
Thermal Shock Resistance, points 5.6
13

Alloy Composition

Aluminum (Al), % 85.3 to 89
1.8 to 2.5
Arsenic (As), % 0
0.020 to 0.1
Copper (Cu), % 0 to 0.3
76 to 79
Iron (Fe), % 0 to 0.8
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.15
0
Silicon (Si), % 11 to 13
0
Zinc (Zn), % 0 to 0.2
17.8 to 22.2
Residuals, % 0
0 to 0.5