MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. C92200 Bronze

4047 aluminum belongs to the aluminum alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 3.4
25
Fatigue Strength, MPa 45
76
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 120
280
Tensile Strength: Yield (Proof), MPa 64
140

Thermal Properties

Latent Heat of Fusion, J/g 570
190
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 580
990
Melting Onset (Solidus), °C 580
830
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 130
70
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
14
Electrical Conductivity: Equal Weight (Specific), % IACS 120
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.5
8.7
Embodied Carbon, kg CO2/kg material 7.7
3.2
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 1050
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
58
Resilience: Unit (Modulus of Resilience), kJ/m3 28
87
Stiffness to Weight: Axial, points 16
6.9
Stiffness to Weight: Bending, points 55
18
Strength to Weight: Axial, points 13
8.9
Strength to Weight: Bending, points 21
11
Thermal Diffusivity, mm2/s 59
21
Thermal Shock Resistance, points 5.6
9.9

Alloy Composition

Aluminum (Al), % 85.3 to 89
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0 to 0.3
86 to 90
Iron (Fe), % 0 to 0.8
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 11 to 13
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0 to 0.2
3.0 to 5.0
Residuals, % 0
0 to 0.7