MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. C96900 Copper-nickel

4047 aluminum belongs to the aluminum alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 3.4
4.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
45
Tensile Strength: Ultimate (UTS), MPa 120
850
Tensile Strength: Yield (Proof), MPa 64
830

Thermal Properties

Latent Heat of Fusion, J/g 570
210
Maximum Temperature: Mechanical, °C 160
210
Melting Completion (Liquidus), °C 580
1060
Melting Onset (Solidus), °C 580
960
Specific Heat Capacity, J/kg-K 900
380
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.5
8.8
Embodied Carbon, kg CO2/kg material 7.7
4.6
Embodied Energy, MJ/kg 140
72
Embodied Water, L/kg 1050
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
38
Resilience: Unit (Modulus of Resilience), kJ/m3 28
2820
Stiffness to Weight: Axial, points 16
7.7
Stiffness to Weight: Bending, points 55
19
Strength to Weight: Axial, points 13
27
Strength to Weight: Bending, points 21
23
Thermal Shock Resistance, points 5.6
30

Alloy Composition

Aluminum (Al), % 85.3 to 89
0
Copper (Cu), % 0 to 0.3
73.6 to 78
Iron (Fe), % 0 to 0.8
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0 to 0.1
0 to 0.15
Manganese (Mn), % 0 to 0.15
0.050 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 11 to 13
0 to 0.3
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0 to 0.2
0 to 0.5
Residuals, % 0
0 to 0.5