MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. S45500 Stainless Steel

4047 aluminum belongs to the aluminum alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.4
3.4 to 11
Fatigue Strength, MPa 45
570 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 69
790 to 1090
Tensile Strength: Ultimate (UTS), MPa 120
1370 to 1850
Tensile Strength: Yield (Proof), MPa 64
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 160
760
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 21
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.5
7.9
Embodied Carbon, kg CO2/kg material 7.7
3.8
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 1050
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
45 to 190
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 13
48 to 65
Strength to Weight: Bending, points 21
35 to 42
Thermal Shock Resistance, points 5.6
48 to 64

Alloy Composition

Aluminum (Al), % 85.3 to 89
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.3
1.5 to 2.5
Iron (Fe), % 0 to 0.8
71.5 to 79.2
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.8 to 1.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0