MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. AWS E80C-Ni3

4104 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is AWS E80C-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 110
630
Tensile Strength: Yield (Proof), MPa 60
530

Thermal Properties

Latent Heat of Fusion, J/g 540
260
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1080
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
160
Resilience: Unit (Modulus of Resilience), kJ/m3 25
740
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 12
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 5.1
19

Alloy Composition

Aluminum (Al), % 85.8 to 90
0
Bismuth (Bi), % 0.020 to 0.2
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 0 to 0.25
0 to 0.35
Iron (Fe), % 0 to 0.8
92.8 to 97.3
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
2.8 to 3.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 10.5
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5