MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. EN 1.4913 Stainless Steel

4104 aluminum belongs to the aluminum alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4
14 to 22
Fatigue Strength, MPa 42
320 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 63
550 to 590
Tensile Strength: Ultimate (UTS), MPa 110
870 to 980
Tensile Strength: Yield (Proof), MPa 60
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Maximum Temperature: Mechanical, °C 160
700
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1080
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 25
600 to 1860
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 12
31 to 35
Strength to Weight: Bending, points 20
26 to 28
Thermal Diffusivity, mm2/s 58
6.5
Thermal Shock Resistance, points 5.1
31 to 34

Alloy Composition

Aluminum (Al), % 85.8 to 90
0 to 0.020
Bismuth (Bi), % 0.020 to 0.2
0
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
84.5 to 88.3
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 10.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0