MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. EN 1.7376 Steel

4104 aluminum belongs to the aluminum alloys classification, while EN 1.7376 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4
20
Fatigue Strength, MPa 42
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 110
710
Tensile Strength: Yield (Proof), MPa 60
460

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Maximum Temperature: Mechanical, °C 160
600
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.1
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1080
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
130
Resilience: Unit (Modulus of Resilience), kJ/m3 25
560
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 12
25
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 58
6.9
Thermal Shock Resistance, points 5.1
20

Alloy Composition

Aluminum (Al), % 85.8 to 90
0
Bismuth (Bi), % 0.020 to 0.2
0
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.8
86.2 to 90.6
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0.35 to 0.65
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0