MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. EN 1.7380 Steel

4104 aluminum belongs to the aluminum alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4
19 to 20
Fatigue Strength, MPa 42
200 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 63
330 to 350
Tensile Strength: Ultimate (UTS), MPa 110
540 to 550
Tensile Strength: Yield (Proof), MPa 60
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 540
260
Maximum Temperature: Mechanical, °C 160
460
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1080
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 25
230 to 280
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 12
19 to 20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 5.1
15 to 16

Alloy Composition

Aluminum (Al), % 85.8 to 90
0
Bismuth (Bi), % 0.020 to 0.2
0
Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.8
94.6 to 96.6
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 10.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0