MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. EN AC-44200 Aluminum

Both 4104 aluminum and EN AC-44200 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is EN AC-44200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 2.4
6.2
Fatigue Strength, MPa 42
63
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 110
180
Tensile Strength: Yield (Proof), MPa 60
86

Thermal Properties

Latent Heat of Fusion, J/g 540
570
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 600
590
Melting Onset (Solidus), °C 560
580
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.5
Embodied Carbon, kg CO2/kg material 8.0
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1080
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 25
51
Stiffness to Weight: Axial, points 15
16
Stiffness to Weight: Bending, points 54
55
Strength to Weight: Axial, points 12
20
Strength to Weight: Bending, points 20
28
Thermal Diffusivity, mm2/s 58
59
Thermal Shock Resistance, points 5.1
8.4

Alloy Composition

Aluminum (Al), % 85.8 to 90
85.2 to 89.5
Bismuth (Bi), % 0.020 to 0.2
0
Copper (Cu), % 0 to 0.25
0 to 0.050
Iron (Fe), % 0 to 0.8
0 to 0.55
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Silicon (Si), % 9.0 to 10.5
10.5 to 13.5
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.15