MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. C87500 Brass

4104 aluminum belongs to the aluminum alloys classification, while C87500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is C87500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 2.4
18
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 110
460
Tensile Strength: Yield (Proof), MPa 60
190

Thermal Properties

Latent Heat of Fusion, J/g 540
260
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 600
920
Melting Onset (Solidus), °C 560
820
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 130
28
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1080
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
67
Resilience: Unit (Modulus of Resilience), kJ/m3 25
160
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 12
16
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 58
8.3
Thermal Shock Resistance, points 5.1
17

Alloy Composition

Aluminum (Al), % 85.8 to 90
0 to 0.5
Bismuth (Bi), % 0.020 to 0.2
0
Copper (Cu), % 0 to 0.25
79 to 85
Iron (Fe), % 0 to 0.8
0
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 9.0 to 10.5
3.0 to 5.0
Zinc (Zn), % 0 to 0.2
12 to 16
Residuals, % 0
0 to 0.5