MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. R60705 Alloy

4104 aluminum belongs to the aluminum alloys classification, while R60705 alloy belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is R60705 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
98
Elongation at Break, % 2.4
18
Fatigue Strength, MPa 42
290
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
37
Tensile Strength: Ultimate (UTS), MPa 110
540
Tensile Strength: Yield (Proof), MPa 60
430

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Specific Heat Capacity, J/kg-K 900
270
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 22
6.3

Otherwise Unclassified Properties

Density, g/cm3 2.6
6.7
Embodied Water, L/kg 1080
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
90
Resilience: Unit (Modulus of Resilience), kJ/m3 25
950
Stiffness to Weight: Axial, points 15
8.1
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 12
22
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 58
9.5
Thermal Shock Resistance, points 5.1
63

Alloy Composition

Aluminum (Al), % 85.8 to 90
0
Bismuth (Bi), % 0.020 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.25
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.8
0 to 0.2
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0
Niobium (Nb), % 0
2.0 to 3.0
Nitrogen (N), % 0
0 to 0.025
Oxygen (O), % 0
0 to 0.18
Silicon (Si), % 9.0 to 10.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
91 to 98
Residuals, % 0 to 0.15
0