MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. S45000 Stainless Steel

4104 aluminum belongs to the aluminum alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.4
6.8 to 14
Fatigue Strength, MPa 42
330 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 63
590 to 830
Tensile Strength: Ultimate (UTS), MPa 110
980 to 1410
Tensile Strength: Yield (Proof), MPa 60
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 540
280
Maximum Temperature: Mechanical, °C 160
840
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1080
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 25
850 to 4400
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 12
35 to 50
Strength to Weight: Bending, points 20
28 to 36
Thermal Diffusivity, mm2/s 58
4.5
Thermal Shock Resistance, points 5.1
33 to 47

Alloy Composition

Aluminum (Al), % 85.8 to 90
0
Bismuth (Bi), % 0.020 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0 to 0.25
1.3 to 1.8
Iron (Fe), % 0 to 0.8
72.1 to 79.3
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0