MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. Zamak 3

4104 aluminum belongs to the aluminum alloys classification, while Zamak 3 belongs to the zinc alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is Zamak 3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
86
Elongation at Break, % 2.4
11
Fatigue Strength, MPa 42
48
Poisson's Ratio 0.33
0.25
Shear Modulus, GPa 27
33
Shear Strength, MPa 63
210
Tensile Strength: Ultimate (UTS), MPa 110
280
Tensile Strength: Yield (Proof), MPa 60
210

Thermal Properties

Latent Heat of Fusion, J/g 540
120
Maximum Temperature: Mechanical, °C 160
95
Melting Completion (Liquidus), °C 600
390
Melting Onset (Solidus), °C 560
380
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 22
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
27
Electrical Conductivity: Equal Weight (Specific), % IACS 120
38

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
6.4
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1080
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
28
Resilience: Unit (Modulus of Resilience), kJ/m3 25
260
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 12
12
Strength to Weight: Bending, points 20
15
Thermal Diffusivity, mm2/s 58
43
Thermal Shock Resistance, points 5.1
8.6

Alloy Composition

Aluminum (Al), % 85.8 to 90
3.5 to 4.3
Bismuth (Bi), % 0.020 to 0.2
0
Cadmium (Cd), % 0
0 to 0.0050
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 0 to 0.8
0 to 0.1
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 1.0 to 2.0
0.020 to 0.060
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.020
Silicon (Si), % 9.0 to 10.5
0 to 0.030
Tin (Sn), % 0
0 to 0.0030
Zinc (Zn), % 0 to 0.2
95.3 to 96.5
Residuals, % 0 to 0.15
0