MakeItFrom.com
Menu (ESC)

4115 Aluminum vs. 6262 Aluminum

Both 4115 aluminum and 6262 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4115 aluminum and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 1.1 to 11
4.6 to 10
Fatigue Strength, MPa 39 to 76
90 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 71 to 130
170 to 240
Tensile Strength: Ultimate (UTS), MPa 120 to 220
290 to 390
Tensile Strength: Yield (Proof), MPa 39 to 190
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 160
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
44
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 10
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 270
530 to 940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
48
Strength to Weight: Axial, points 12 to 23
29 to 39
Strength to Weight: Bending, points 20 to 30
35 to 42
Thermal Diffusivity, mm2/s 66
69
Thermal Shock Resistance, points 5.2 to 9.9
13 to 18

Alloy Composition

Aluminum (Al), % 94.6 to 97.4
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 0.1 to 0.5
0.15 to 0.4
Iron (Fe), % 0 to 0.7
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0.1 to 0.5
0.8 to 1.2
Manganese (Mn), % 0.6 to 1.2
0 to 0.15
Silicon (Si), % 1.8 to 2.2
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0
0 to 0.15