MakeItFrom.com
Menu (ESC)

4115 Aluminum vs. ASTM A182 Grade F5a

4115 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F5a belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4115 aluminum and the bottom bar is ASTM A182 grade F5a.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 38 to 68
310
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 11
25
Fatigue Strength, MPa 39 to 76
380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 71 to 130
450
Tensile Strength: Ultimate (UTS), MPa 120 to 220
710
Tensile Strength: Yield (Proof), MPa 39 to 190
520

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Maximum Temperature: Mechanical, °C 160
510
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1160
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 10
160
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 270
700
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12 to 23
25
Strength to Weight: Bending, points 20 to 30
23
Thermal Diffusivity, mm2/s 66
11
Thermal Shock Resistance, points 5.2 to 9.9
20

Alloy Composition

Aluminum (Al), % 94.6 to 97.4
0
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 0.1 to 0.5
0
Iron (Fe), % 0 to 0.7
91.4 to 95.6
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.8 to 2.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0