MakeItFrom.com
Menu (ESC)

4115 Aluminum vs. ASTM A356 Grade 8

4115 aluminum belongs to the aluminum alloys classification, while ASTM A356 grade 8 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4115 aluminum and the bottom bar is ASTM A356 grade 8.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 38 to 68
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 11
21
Fatigue Strength, MPa 39 to 76
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 120 to 220
630
Tensile Strength: Yield (Proof), MPa 39 to 190
390

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Maximum Temperature: Mechanical, °C 160
440
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
38
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.0
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1160
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 10
110
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 270
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12 to 23
22
Strength to Weight: Bending, points 20 to 30
21
Thermal Diffusivity, mm2/s 66
10
Thermal Shock Resistance, points 5.2 to 9.9
18

Alloy Composition

Aluminum (Al), % 94.6 to 97.4
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 0.1 to 0.5
0
Iron (Fe), % 0 to 0.7
95.4 to 97.4
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 1.8 to 2.2
0.2 to 0.6
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0