MakeItFrom.com
Menu (ESC)

4115 Aluminum vs. EN 1.4418 Stainless Steel

4115 aluminum belongs to the aluminum alloys classification, while EN 1.4418 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4115 aluminum and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 11
16 to 20
Fatigue Strength, MPa 39 to 76
350 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 71 to 130
530 to 620
Tensile Strength: Ultimate (UTS), MPa 120 to 220
860 to 1000
Tensile Strength: Yield (Proof), MPa 39 to 190
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1160
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 10
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 270
730 to 1590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12 to 23
31 to 36
Strength to Weight: Bending, points 20 to 30
26 to 28
Thermal Diffusivity, mm2/s 66
4.0
Thermal Shock Resistance, points 5.2 to 9.9
31 to 36

Alloy Composition

Aluminum (Al), % 94.6 to 97.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0.1 to 0.5
0
Iron (Fe), % 0 to 0.7
73.2 to 80.2
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.8 to 2.2
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants