MakeItFrom.com
Menu (ESC)

4115 Aluminum vs. EN 1.7365 Steel

4115 aluminum belongs to the aluminum alloys classification, while EN 1.7365 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4115 aluminum and the bottom bar is EN 1.7365 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 38 to 68
210
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 11
18
Fatigue Strength, MPa 39 to 76
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 120 to 220
700
Tensile Strength: Yield (Proof), MPa 39 to 190
470

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Maximum Temperature: Mechanical, °C 160
510
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1160
70

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 10
110
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 270
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12 to 23
25
Strength to Weight: Bending, points 20 to 30
22
Thermal Diffusivity, mm2/s 66
11
Thermal Shock Resistance, points 5.2 to 9.9
20

Alloy Composition

Aluminum (Al), % 94.6 to 97.4
0
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 0.1 to 0.5
0 to 0.3
Iron (Fe), % 0 to 0.7
91.2 to 94.9
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0.5 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.8 to 2.2
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0