MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. 1050 Aluminum

Both 413.0 aluminum and 1050 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 2.5
4.6 to 37
Fatigue Strength, MPa 130
31 to 57
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Shear Strength, MPa 170
52 to 81
Tensile Strength: Ultimate (UTS), MPa 270
76 to 140
Tensile Strength: Yield (Proof), MPa 140
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
650
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
230
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
61
Electrical Conductivity: Equal Weight (Specific), % IACS 120
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.3
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1040
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 130
4.6 to 110
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 29
7.8 to 14
Strength to Weight: Bending, points 36
15 to 22
Thermal Diffusivity, mm2/s 59
94
Thermal Shock Resistance, points 13
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 82.2 to 89
99.5 to 100
Copper (Cu), % 0 to 1.0
0 to 0.050
Iron (Fe), % 0 to 2.0
0 to 0.4
Magnesium (Mg), % 0 to 0.1
0 to 0.050
Manganese (Mn), % 0 to 0.35
0 to 0.050
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0 to 0.25
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0 to 0.050
Residuals, % 0 to 0.25
0