MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. 5182 Aluminum

Both 413.0 aluminum and 5182 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 2.5
1.1 to 12
Fatigue Strength, MPa 130
100 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
25
Shear Strength, MPa 170
170 to 240
Tensile Strength: Ultimate (UTS), MPa 270
280 to 420
Tensile Strength: Yield (Proof), MPa 140
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 570
390
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
28
Electrical Conductivity: Equal Weight (Specific), % IACS 120
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 130
120 to 950
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 29
29 to 44
Strength to Weight: Bending, points 36
36 to 47
Thermal Diffusivity, mm2/s 59
53
Thermal Shock Resistance, points 13
12 to 19

Alloy Composition

Aluminum (Al), % 82.2 to 89
93.2 to 95.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 1.0
0 to 0.15
Iron (Fe), % 0 to 2.0
0 to 0.35
Magnesium (Mg), % 0 to 0.1
4.0 to 5.0
Manganese (Mn), % 0 to 0.35
0.2 to 0.5
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0 to 0.2
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
0 to 0.25
Residuals, % 0
0 to 0.15