MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. A380.0 Aluminum

Both 413.0 aluminum and A380.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is A380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
80
Elastic (Young's, Tensile) Modulus, GPa 73
73
Elongation at Break, % 2.5
3.3
Fatigue Strength, MPa 130
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Shear Strength, MPa 170
190
Tensile Strength: Ultimate (UTS), MPa 270
290
Tensile Strength: Yield (Proof), MPa 140
160

Thermal Properties

Latent Heat of Fusion, J/g 570
510
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
590
Melting Onset (Solidus), °C 580
550
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
96
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
25
Electrical Conductivity: Equal Weight (Specific), % IACS 120
78

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.6
7.5
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1040
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
8.3
Resilience: Unit (Modulus of Resilience), kJ/m3 130
180
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
48
Strength to Weight: Axial, points 29
28
Strength to Weight: Bending, points 36
34
Thermal Diffusivity, mm2/s 59
38
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 82.2 to 89
80.3 to 89.5
Copper (Cu), % 0 to 1.0
3.0 to 4.0
Iron (Fe), % 0 to 2.0
0 to 1.3
Magnesium (Mg), % 0 to 0.1
0 to 0.1
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.5
Silicon (Si), % 11 to 13
7.5 to 9.5
Tin (Sn), % 0 to 0.15
0 to 0.35
Zinc (Zn), % 0 to 0.5
0 to 3.0
Residuals, % 0
0 to 0.5