MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. ASTM B540 Palladium

413.0 aluminum belongs to the aluminum alloys classification, while ASTM B540 palladium belongs to the otherwise unclassified metals. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is ASTM B540 palladium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 2.5
1.1 to 14
Fatigue Strength, MPa 130
350
Poisson's Ratio 0.33
0.38
Shear Modulus, GPa 28
39
Shear Strength, MPa 170
500 to 700
Tensile Strength: Ultimate (UTS), MPa 270
830 to 1240
Tensile Strength: Yield (Proof), MPa 140
620 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 570
140
Melting Completion (Liquidus), °C 590
1220
Melting Onset (Solidus), °C 580
1020
Specific Heat Capacity, J/kg-K 900
240
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
4.9 to 5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.5 to 3.9

Otherwise Unclassified Properties

Density, g/cm3 2.6
13

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
13 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1790 to 4660
Stiffness to Weight: Axial, points 16
4.7
Stiffness to Weight: Bending, points 53
12
Strength to Weight: Axial, points 29
18 to 27
Strength to Weight: Bending, points 36
15 to 20
Thermal Shock Resistance, points 13
41 to 61

Alloy Composition

Aluminum (Al), % 82.2 to 89
0
Copper (Cu), % 0 to 1.0
13.5 to 14.5
Gold (Au), % 0
9.5 to 10.5
Iron (Fe), % 0 to 2.0
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Palladium (Pd), % 0
34 to 36
Platinum (Pt), % 0
9.5 to 10.5
Silicon (Si), % 11 to 13
0
Silver (Ag), % 0
29 to 31
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0.8 to 1.2
Residuals, % 0
0 to 0.3