MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. EN 1.4595 Stainless Steel

413.0 aluminum belongs to the aluminum alloys classification, while EN 1.4595 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is EN 1.4595 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.5
29
Fatigue Strength, MPa 130
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 170
310
Tensile Strength: Ultimate (UTS), MPa 270
470
Tensile Strength: Yield (Proof), MPa 140
250

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
30
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.4
Embodied Energy, MJ/kg 140
34
Embodied Water, L/kg 1040
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
150
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 29
17
Strength to Weight: Bending, points 36
17
Thermal Diffusivity, mm2/s 59
8.1
Thermal Shock Resistance, points 13
17

Alloy Composition

Aluminum (Al), % 82.2 to 89
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 2.0
81.3 to 85.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0.2 to 0.6
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0