MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. EN 1.4958 Stainless Steel

413.0 aluminum belongs to the aluminum alloys classification, while EN 1.4958 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.5
40
Fatigue Strength, MPa 130
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 170
430
Tensile Strength: Ultimate (UTS), MPa 270
630
Tensile Strength: Yield (Proof), MPa 140
190

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 590
1400
Melting Onset (Solidus), °C 580
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.6
5.3
Embodied Energy, MJ/kg 140
75
Embodied Water, L/kg 1040
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
190
Resilience: Unit (Modulus of Resilience), kJ/m3 130
95
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 29
22
Strength to Weight: Bending, points 36
20
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 82.2 to 89
0.2 to 0.5
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 1.0
0 to 0.5
Iron (Fe), % 0 to 2.0
41.1 to 50.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Nickel (Ni), % 0 to 0.5
30 to 32.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 11 to 13
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.2 to 0.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0